Dynamic brains & dynamic environments for creativity: How so?

Everyone today is telling us that we need to regularly “exercise” our brain. But what does mental exercise mean for creativity? When we regularly workout “mentally” what is really changing in our brain?

By mental exercise, we mean engaging in challenging activities that require us to pay close attention and learn new things and make novel, often subtle, distinctions between similar-appearing things. The distinctions could be sensory-perceptual, or about meaning, or about action. Our brains are continually learning and forming predictions based on the environments we choose and make for ourselves. Environments matter.

Our brain—in response to our environments—changes continually, in multiple ways, and across multiple timescales. Both the structure of the brain (that is, how it is built) and the function (that is, the ways it processes information) may change in the face of experience. At the structural level, stimulating mental exercise may lead to the formation of new synaptic connections between neurons (that is, changing “gray matter”). It may also lead to more efficient connections between neurons and neuronal ensembles at long distances through changing what is known as “white matter” or axons. Greater white and gray matter connectivity may enable us to process and understand information more quickly and efficiently.

In the longer-term, our increased active grappling with novelty might lead to the generation of new neurons (neurogenesis) in regions of the brain such as the hippocampus, important in memory and in making connections between our experiences. Challenging mental exercise may make it more likely that new neurons that are born throughout our lifespan actually survive and become meaningfully connected to our existing memory and experience networks. New, effortful, and successful learning is the ticket to the survival and integration of many newly generated neurons. This could allow us to develop an increasingly deeper and richer wellspring of knowledge to draw upon in our discoveries and problem solving.

We should also consider the conjoined benefits of mental with physical exercise. Putting the two together may yield benefits that are more than the sum of their parts.

So what works best? Particularly potent are activities that involve naturally occurring combinations of mental and physical actions and that call on fine-grained multimodal coordination in time and space, such as various forms of dance, theater, filmmaking, musical performance, or real-world making and shaping. Dislodging old unproductive habits, deliberately varying, and paying attention in the moment all help our brains to dynamically develop brand new neural connections. We should choose and nurture activities that offer us long-term challenges with ever-unfolding possibilities.

As we observe in Part 1 of our book, Innovating Minds:

“We cannot understand creativity, or identify potential barriers to the generation of novel and innovative ideas and methods, if we isolate our mind or brain from our environments.  Our minds, brains, and environments are in perpetual interplay.  It is at their intersections that new ideas emerge and can be realized.”

 

–>For some empirical research on our dynamic brains and environments see:

Newly learning to juggle is a stimulus to brain plasticity. Juggling changes the brain’s gray matter. And juggling changes the brain’s white matter.

How stimulating environments “makes new neurons, and effortful learning keeps them alive.”

Learning to vary: An overlooked avenue to mental flexibility and innovation

It’s easy to repeat. But, we can also ask ourselves to not repeat––and reward ourselves for deliberately varying. Although little recognized, rewarding variability is a powerful shaper of creativity and innovation.

As we will see in Part 4 of our book Innovating Minds:

“Deliberately varying our actions helps to bring different sets of thoughts and procedures close together in time and space within our individual and group idea landscapes. This, in turn, allows us to combine and reconfigure aspects of ideas and ways of doing things to make novel combinations. . . . It is not always an entirely new approach that is needed. Sometimes “repeating with a difference” frees us to see new options.”

Whether shy or bold, lab animals that were rewarded for interacting in different ways with new objects later explored more widely. Trained dolphins, too, that were rewarded for varying showed newly emerging novel behaviors that had never before been seen in dolphins.

In our own creative endeavors we can also prompt ourselves to do things differently within constraints. Some questions we can ask:

How can we better learn to (appropriately) “reinforce variability” in ourselves, and in others?

How might we structure our physical, symbolic, and technological environments to better support “useful” experimentation and variation?

Do we too strongly emphasize minor variability in what we already know and do well, with mostly “known” but smaller rewards (sometimes called “exploitation”)? Do our attempts at minor variations come at the cost of more far-afield, novel, and bold exploration that is more risky and uncertain––but also potentially yields much larger rewards and creative breakthroughs?

What might be some of the cognitive processes that underlie the demonstrated benefits of reinforcing variability? That is: What’s being learned when variability is reinforced? What cognitive and perceptual processes (besides motivational ones) might contribute to the observed effects?

 

–>To further explore routes to greater creative/productive variability in behavior see:

Wilma Koutstaal (2012) The Agile Mind [Learning to vary versus learning to repeat, in chapter 5]  (New York, NY: Oxford University Press) pp. 220-233.

Patricia Stokes (2001). Variability, constraints, and creativity: Shedding light on Claude Monet. American Psychologist, 56 pp. 355-359.

Alison Weiss & Allen Neuringer (2012). Reinforced variability enhances object exploration in shy and bold rats. Physiology & Behavior, 107 pp. 451–457.